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ADAPTION OF KOITER’S METHOD TO FINITE ELEMENT
ANALYSIS OF SNAP-THROUGH BUCKLING BEHAVIORT

RAPHAEL T. HAFTKA,I ROBERT H. MALLETT § and WILLIAM NACHBAR|

University of California, San Diego, La Jolla, California

Abstract—K oiter’s approach to the analysis of load-displacement behavior in the neighborhood of a bifurcation
buckling point is adapted to permit the analysis of behavior in the neighborhood of the buckling point for a
structure that exhibits snap-through buckling. The essential concept is the consideration of pre-buckling non-
linearities as generalized initial imperfections of a derived perfect structure called the modified structure. The
asymptotic character of Koiter’s approach is preserved in this modified structure method of analysis. The develop-
ment is stated in a functional notation and is then discretized into a matrix procedure based upon finite element
idealization. Numerical results are presented for the load—displacement behavior of a circular arch.

1. INTRODUCTION

(a) Background

PRESENT structural analysis practices, particularly within the aerospace industry, rely
heavily upon the matrix methods of structural analysis based upon finite element idealiza-
tions. Highly organized computer programs of broad applicability are used extensively for
the prediction of linear behavior in support of the structural design process.

The design of a major portion of the primary structure of flight vehicles involves con-
sideration of structural stability and, with rare exceptions, structural stability phenomena
are essentially nonlinear. That is, the load-displacement behavior is nonlinear prior to
buckling, and buckling is usually of the snap-through rather than of the bifurcation type.
Reference [1] presents a comprehensive review of the finite element methods that have been
developed for the prediction of nonlinear behavior. Unfortunately, these methods require
very extensive amounts of calculation to predict nonlinear behavior.

Practical considerations of structural stability usually proceed, necessarily, on the basis
of a linearized (eigenvalue) analysis. The deficiency of this approach is that the error in the
buckling load is often substantial (for example, see [2]) and no information is obtained
about nonlinear behavior. A method for the analysis of stability of structures is needed
which is more complete and more accurate than a linearized (eigenvalue) analysis and
which is more efficient than a direct attack on the prediction of nonlinear behavior. The
method presented in this paper is of such a nature.

t This paper was prepared in the course of research sponsored by the Air Force Flight Dynamics Laboratory,
Air Force Systems Command, United States Air Force under Contract No. F33615-69-C-1899.
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The foundation for this method of analysis was set down by Koiter in his fundamental
work on the stability of equilibrium [3]. The principle of minimum potential energy is used
to derive an asymptotic technique that gives an approximation for initial post-buckling
behavior and imperfection sensitivity of structures. Koiter’s technique, and paraliel
methods that have been developed independently by other researchers, have been used to
investigate the behavior of a number of structures [4-12].

It is significant that Koiter’s technique is applicable only to structures which exhibit a
bifurcation point type of buckling. This mode of buckling is usually found in a structure
which is symmetric both in geometry and in the applied load system. The applied load
system is assumed proportional to a non-negative load parameter A. For small values of 4,
the displacements of the structures are continuous functions of A and preserve the symmetry.
Usually, as 4 increases, there is a critical point where asymmetric displacements become
possible. The load—displacement curve up to the critical point is called the fundamental
equilibrium path. A bifurcation of the fundamental equilibrium path occurs at the critical
point. The association between symmetry and bifurcation is reflected in the terminology,
and a structure having a bifurcation point is often referred to as a “‘perfect” structure.

A prerequisite to the use of Koiter’s method is the determination of the fundamental
equilibrium path of the perfect structure U, as an explicit function of the applied load
parameter A. Unless this fundamental equilibrium path is very simple, the analytical
application of Koiter’s method becomes a formidable task. For this reason, application of
Koiter’s method has been made almost exclusively to structures with trivial or linear
fundamental equilibrium paths.

Starting with knowledge of the fundamental path, the first part of Koiter’s analysis is
initiated by looking for points of possible instability on that path. Stability is equated with a
strict minimum of the potential energy. This means that, if U(4)+u is any kinematically
admissible state adjacent to U(/), then for stability, given any nontrivial u,

N{UA)+u] —II[U(A)] = P(u) > 0, (1)

where Il denotes the total potential energy functional. The transition functional P(u) is
expanded in a Taylor series about u = 0. A critical point is one where the quadratic terms
of P(u) (the second variation of IT) become positive semidefinite. This point may be stable,
neutral or unstable depending on the higher-order terms in the expansion of P(u). In the case
of critical points which are bifurcation points, Koiter showed how to use the Taylor
expansion of P(u) to predict post-buckling behavior.

The second part of Koiter’s method is to consider a class of structures which differ
slightly from the original. The difference or “imperfection” that determines this class usually
destroys the symmetry of the structure, and the asymmetric structures do not have bifurca-
tion points—they are “‘imperfect”. Nevertheless, the results of the first part of the Koiter
method are readily corrected to account for the imperfection effects. Snap-through buckling
loads are obtained which are asymptotically exact for vanishingly small imperfections.
Generally, predictions are satisfactory because imperfections in practical structures are
sufficiently small.

The principal virtue of Koiter’s method of analysis is that, after the fundamental path
has been determined, the remaining nonlinear problem is transformed into a sequence of
linear problems. Because interest is confined to the region of the buckling load, the nonlinear
analysis is reduced to an effort equivalent to one or two linear analyses. This is only slightly
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more effort than a linearized stability analysis and is far less effort than a direct nonlinear
behavior analysis.

Improvement of the practices of finite element analysis on the basis of this efficient
asymptotic method has small utility because the class of structures which undergo bifurca-
tion has extremely few members. Many important problems of this class are amenable to
analytical solutions, obviating the need for finite element solutions. This situation attaches
particular significance to the adaption of the Koiter method to permit analysis of load-
displacement behavior in the neighborhood of a snap-through buckling load.

(b) The modified structure method

Recognizing pre-buckling nonlinearity as an essential characteristic of snap-through
buckling behavior, one is led to linearization of the fundamental load—displacement
behavior as a means of accomplishing this transformation. Applicability of the Koiter
method of analysis to problems with a nonlinear snap-through type of buckling is accom-
plished by transforming these problems into linear bifurcation buckling problems. A
hypothetical structure, for which the linearized analysis yields the fundamental equilibrium
path, is created by modifying the potential energy functional for the actual structure.
This hypothetical or modified structure generally undergoes bifurcation buckling, and it will
be referred to as the “perfect” structure (in Koiter’s method, perfectness corresponds to
having a bifurcation point). The difference between the potential energies of the actuai
imperfect structure and the hypothetical perfect structure is proportional to the terms that
are responsible for thenonlinear behavior. Thus, the “imperfection’ is in a sense proportional
to the nonlinearity of the actual structure. Because of other conditions governing the design
of actual structures using stiff materials, most structural behavior is only moderately
nonlinear in the design range, and thus the “imperfections” to the modified structure are
small.

This concept of a modified structure that is “perfect” has value only if the analysis
permits recovery of the behavior of the actual structure. Indeed, this is the case. Account of
the effect of pre-buckling nonlinearities proves to be possible within the theoretical frame-
work set down by Koiter for the consideration of initial imperfections. Thus, the adaption
to snap-through buckling problems is accomplished within the framework of Koiter’s
theory [3].

The statement of the modified structure method of analysis in Section 2 is followed in
Section 3 by expression of the method in terms of finite element matrices. Previous applica-
tions of the theory of Koiter [3] have sought analytical results on the basis of continuum
formulations. Such efforts are highly oriented to particular problems. The generality of the
finite element approach adopted herein is in marked contrast to these previous develop-
ments,

The discretization and matrix abstraction of the finite element statement of the modified
structure method of analysis renders computations independent of particular problems and
particular types of structures. Verification presented in Section 4 for the particular case of a
circular arch establishes the modified structure method both conceptually and procedurally
for other types of structures as well. In principle, it remains only to furnish the appropriate
types of finite element matrices.

The form of the finite element representation employed herein is drawn from [13].
It is significant that the finite element matrices already developed and employed in linear
{eigenvalue) stability analyses and nonlinear behavior analyses are adequate for the
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modified structure method of analysis. Thus, existing capabilities for linear stability analyses
and nonlinear behavior analyses can be readily adapted to execute the modified structure
analysis procedure.

The difficulty of obtaining solutions to partial differential equations has confined prior
applications of Koiter’s theory almost exclusively to the prediction of first-order approxi-
mations to post-buckling equilibrium paths. Even first-order continuum solutions become
exceedingly difficult, however, when using the modified structure method. On the other
hand, the discretized finite element implementation of the modified structure method of
analysis is not difficult. Indeed, higher-order approximations are obtained with relative ease.
Advantage is taken of this and results for such higher-order approximations are presented
for the arch structure in Section 4.

Further developments of the present method of analysis is expected to extend its
applicability to more highly nonlinear structures. This is shown in Fig. 1 wherein the
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FI1G. 1. Schematic illustration of modified structure method.

asymptotic analysis is illustrated as being initiated from a deformed state on a nonlinear
fundamental equilibrium path. This approach is attractive because the asymptotic method
tends to be most accurate in the region of the maximum load, and this is precisely the region
where the direct prediction of behavior is the most difficult.
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2. ANALYSIS METHOD IN FUNCTIONAL FORM

(a) Basic notation

Fidelity to the notation of [3] is maintained in order that results from that source may be
used without repeating the underlying derivation. In this way, conciseness is achieved in
describing the method without sacrificing completeness.

The statement of the total potential energy functional introduces the principal symbolic
notation. We denote by U the set of displacement functions and displacement function
derivatives which appear in the total potential énergy functional IT(U) for a given structure
and given loads. The functional IT(U) is expressed as a sum of functionals, each of which is
homogeneous of degree i in the components of U, i.e.

II(U) = DyU)+ N (U)+ () + ... 2
where, for any scalar “a”,
[{aU) = a'TI{U) i=0,1,2,.... 3)
Extending this symbolic notation, the bilinear functional I1,; is defined by
MU+ V) = IL,(U)+11,,(U, V)+I1,(V). )

For example I1,(U) = cU? yields I1, (U, V) = 2cUV. This notation is usefully generalized
to define various additional functionals, e.g.

I,(U+ V) = H3(U)+11,,(U, V)+11,,(U, V)+I5(V), 5
and
MU+ V+ W) = I(U)+11,,(U, V)

+ 11, (U, W)+ 11 ,,(U, V)+11,(U, W)

+I1,,(V, W)+ T1,5(V, W)+ I13(V)+ I15(W)

+11,,,(U, V, W). (6)
Each functional is of homogeneous degree in the variables as indicated by the subscripts.
Thus, IT,,(U, V)is comprised of cubic terms which are of second degree in the components

of U and of first degree in the components of V. For example, I15(U) = cU? yields
I,,(U, V) = 3cU*Vand I1,,(U, V) = 3cUV2

(b) The perfect structure

The equation of equilibrium can be derived by setting the first variation of the total
potential energy of equation (2) equal to zero. Thus the variational equation is

0 = IT,(0U)+11,,(8U, U)+1I1,,(6U, U)+T1,5(6U, U)+ . ... (7

Clearly, all functionals beyond the first two contribute to the equilibrium equation terms
that are nonlinear in the components of U. The applied load is assumed to appear in the
first term on the right of equation (7) as the product of a unit load system and the non-
negative load intensity parameter A.

Application of the method of [3] requires knowledge of the solution of the equilibrium
equations, with boundary conditions, as an explicit function of 4 for A increasing from zero.
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In general, such a solution is difficult to obtain ; on the other hand, linearization of equation
(7) gives the form

0=1I1,(6U)+1I1,(6U, U) 8
that readily admits a solution of the formt
U() = U, = AU, ©9)

where U, is the solution of equation (8) for the unit load system.

Obviously, this solution is not generally an extremum of the potential energy functional
IT(U). Indeed, it is easy to construct a potential energy functional IT(U) for which the U(A)
in equation (9) is the extremum  this is

I(U) = (V) - Q,(U) (10)
where
Q.(U) =T1,,(U, AU )+ 1 3(U, AU )+ 11, (U, AU+ ... (11)

It is interesting to note that, because Q,(U)is linear in U, it can be interpreted as an external
load energy, and the potential energy II(U) could derive from a rather special external load
system. Examination of equation (11) discloses that the form of 0,(U) is identical with that
which arose in [3] in accounting for effects of initial imperfections. The only difference is
that, in Koiter’s work, Q,(U) is multiplied by a parameter of imperfection ¢ which can be
made as small as desired. Here we must rely on an inherent smallness of @,(U) itself. It
follows that the pre-buckling nonlinearities can be accounted for by using the same technique
that Koiter introduced for initial imperfection effects. With this observation, the conceptual
generalization of Koiter’s method to the analysis of load—displacement behavior in the
neighborhood of a snap-through buckling load is accomplished. It remains to describe the
procedural aspects.

Hereinafter, consistent with [3], TI(U) will be taken to define the “perfect” structure.
The U(A) of equation (9) will be designated the ““fundamental” solution, and the nonlinear
terms which comprise the energy contribution Q,(U) will be treated as generalized initial
imperfections.

(c) The bifurcation point

The analysis is carried forward by calculation of the bifurcation buckling load of the
perfect structure. Toward this end, the potential energy of transition from the fundamental
state to an adjacent state is formed by analogy with equation (1). Use of a Taylor series
expansion yields this transition energy naturally as a sum of contributions of homogeneous
order. From

P(u) = M(AUy+u)—TI(AU,) (12)
we obtain, for each u sufficiently small,
P(u) = Py(u)+ Py(u)+ P3(w)+ . .. (13)

t It is tacitly assumed here that I1; is linear in 4, and that IT, is not dependent on A. If this is not so, lineariza-
tion entails the dropping of some parts of I, and I1,,, and a corresponding change in Q, . [See the example of
Section 4(a).]
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where the homogeneous contributions P{u) may be expressed in terms of notation previously
defined :

Py(u) = 0 = I1,(u)+I1,,(u, AU,), (14)
Py(u) = TL(u)+ T,y (u, AU )+ 55, AUG) + ..., (15)
Py(u) = TTa(u)+ T3, (u, AU Q)+ o, AUG)+ ..., (16)
Py(u) = TLy(u)+ T4y (1, AU Q)+ T, AUG) + . .., (17)

etc.

Upon increase of A from zero, P,(u) is positive-definite in u for sufficiently small A.
At the bifurcation buckling load level 1,, P,(u) vanishes for u which satisfies

P“((su, u) = 0. (18)
Equation (18) is written equivalently as
0 =IT,,(6u, u)+I1,,,(0u, u, AU )+ I, ,(0u, u, AU+ ... (19)

Solutions of this nonlinear eigenvalue equation exist only for certain values of the load
intensity parameter. Herein, it is assumed that the lowest eigenvalue A = 4, is discrete and
has the unique eigenfunction u = u,.

(d) Approximate behavior analysis
The behavior of the actual imperfect structure is now approached by expansion of the

potential energy about the bifurcation point of the perfect structure. Account is taken of
applied load variations (A —4,) in this expansion, and the generalized initial imperfection
terms are included. From equations (9), (10) and (13), and with use of the prime () to denote
differentiation with respect to the load, we obtain
(U, 4) = TI(AU,, )+ P(u, 1)+ Q,(Aug, 1)+ Q4 (u, 2)
= [I(AU,, )+ Q. () + (4 — 4,))Q1(w)+ (A— 4,)* Qi (w) + . ..

+ Py(u)+ (A= A)P5u)+(A— A2 Py(u) + . ..

+ P3(w)+ (A~ A,)P3(u)+(A—1,)*P5(w) + ...

+ Py(u)+(A—A)Pyu)+(A— A’ Py(w) + . ..,
etc. (20)

The Euler equations of this potential energy functional are sought in two stages by taking
u=au, +i. (21)

First, “a” is held constant and i is determined. Then, the remaining single degree of freedom
problem in “a” is solved to complete the behavior analysis.

Upon substitution of equation (21) into (20) to obtain the energy functional in terms
of the chosen unknown field, i, it becomes necessary to truncate the energy functional ex-
pansion in order to find a solution. Moreover, the nonlinearity of the Euler equations for i
necessitates the approximation of this unknown field by a series expansion. This derivation
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is presented in detail in [30, p. 85]. We record the resulting solution for & as
i = @o+@iald—2,)+¢a* (22)

in which terms cubic and higher [ie. a{(A—4,), for i+ j > 3] have been neglected. The
associated single degree of freedom potential energy functional is given byt

Fla) = Ay(A—A)a® + AY(A— A;)2a? + ;0 + Ay(A—2,)a® + Aga* + O, (uy)a

+[Qi(u1) = Py 1(@0, @)](A—A1)a— Py (@0, 92)a’. (23)
The quantities in equations (22) and (23) that require definition are as follows:
Ay = Paluy], (24)
Az = P3lu,] = P[], (25)
Az = Pyuy], (26)
Ay = P3luy] = Piy[91, @2], (27)
Ay = Pfu, ] = Pylo,]. (28)

It is to be understood that all functionals are evaluated at A = 1,. The unknown fields
@0, @7 and @, are defined by the linear relations given below:

Q,[uy]

Pl 1+ QeI ~ A Tl 8 = O (299)
Ti1[uy, 9ol =0, (29b)
Pl 4 Phalin =4 Tl ] = 0 (300)
Tiy[ug, 11 =0, (30b)

Pl &1+ Pl =523 T £ = 0 (31a)
Ty, [uy, 2] = 0. (31b)

The functional T, is an arbitrary, positive-definite quadratic functional. It is used for
defining orthogonality of displacement fields, but its choice does not affect the assessment
of stability at the critical point.

The potential energy defined by equation (23) is an algebraic function of a single variable.
Thus, the analysis is carried to completion by solution of the Euler equation

dF(a)
da

0 (32)
for “a” as a function of the applied load parameter. This result permits recovery of the
actual displacement field as an explicit function of the applied load, as will be illustrated
subsequently.

1 It should be noted that in most applications of Koiter’s work a lower order approximation consisting of the
1, 3, 5 and 6 terms in equation (23) is used.
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3. THE ANALYSIS METHOD IN FINITE ELEMENT FORM

(a) Notation

The matrix representation and the attendant notation of a nonlinear finite element
model are drawn from the work of Mallett and Margal [13]. Specifically, the finite element
representation of a geometrically nonlinear structure is taken to be given by,

Q) = QK] +4INUQ)]+15(N2AQ, Q)1]{Q} — @ J{P} (33)
where
Q) is the total potential energy,
{Q},1Q] 1is the set of gridpoint displacement degrees of freedom,t
{P} is the applied load vector associated with the displacement Q,
[K] is the stiffness matrix,
[N1(Q)] is a matrix whose terms depend linearly upon the displacement Q; it is referred

to as the “‘first order incremental stiffness matrix”,
[N2(Q,Q)] isa matrix whose terms depend quadratically upon the displacement Q; it is
referred to as the “second order incremental stiffness matrix”.

The basis for the choice of this form of finite element representation is the inherent
breakdown into the homogeneous energy contributions identified in equation (2), i.e.

I,(Q) = — 1Q[{P}, (34)
I,(Q) = 21 1[KK @}, (35)
I15(Q) = $LQIINUQ){Q}, (36)
I.(Q) = 1512 ][N2(Q, 9)}{Q}. (37)

(b) The perfect structure
The Euler equations corresponding to equation (7) derive from

0= —6QI{P}+0QJ[KI{Q} +310Q |INUQ{Q} +5(6QIIN2Q, Q){Q},  (38)
and linearization yields
{0} = —{P} + [K]{Q} (39)

from which the linearized displacement {Q(1)} [equation (9)] corresponding to a load
system A{P,} is obtained as

{QW)} = A{Qo} = [K]™"A{Po}. (40)
It follows immediately upon reference to equations (11) and (33) that the modification}

Q.(Q) to obtain the potential energy function of the perfect structure {equation (10)] is

0.(Q) = 5 LQIINIQuN{Q} +75 1QIIN2Qo, 001120} @

T The brackets { } which identify Q as a column vector, and | | which identify Q as a row vector are omitted
where no ambiguity results.
1 Note that Q, is scalar; all other Q’s are displacement vectors.
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(¢c) The bifurcation point

The finite element representation of the transition energy for the perfect structure
[equation (13)], as defined by equations (14)17) is given by

P9 =0, (42)
Py(g) = $lqI[[K]+ AIN1(Qo)] + A2 [N2(Q, Qo)l}{g}. (43)
Py(q) = £1qI[[N1@)]+2[N2(q, 2Q0)]}{q}. (44)
Py(q) = 1519][N2(q, 9)1{q}. (45)

The particularization of equations (18) and (19) appropriate for determination of the
critical buckling load level for the perfect structure is drawn from equation (43) as

P11(3,9) = 0 = {3 I[[K]+A[(NL(Qo)]+ A2 [N2AQo, Qo)l]{g}- (46)

The quadratic eigenvalue problem that results from equation (46) for arbitrary {dq} is
assumed to yield a smallest positive eigenvalue 4,, which is distinct, and a unique eigen-

vector {g} = {4}.

(d) Approximate behavior analysis

The solution for the approximate behavior is essentially complete upon specification
of the scalar coefficients in the single degree of freedom energy functional of equation (23).
Thus, a direct translation of the functional notation for these coefficients into that of the
finite element representation completes the analysis. As we are dealing with ordinary
vectors we will use a functional T,(U) which corresponds to the usual scalar product, i.e.

Ty(q) = $lq1{q}. (47)
Equations (30a, b) for {¢}} now become
[Kel{oi} ={ri};  la1l{e1} =0 (48)
where
(K] = [K]+ A [N1(Qo)] + A [N2(Qy, Qo)) (49)
and
_ e J[INL(Qo)] + 24, [N2Qo, Qoll}{41}
tri} lg: g4} )
~[INUQo) +244[N2(Qo, Qo)]}{a:1 }- (50)
Equations (31a, b) for {¢,} now become
(Krl{@2} = {r2}; l9: {@s} =0 (51)
where

g [INUg )1+ 24, [N2g;, Qo)1 ]{Q0} (a0
[41] {‘11} !

—4[N1(g,)] +24,[N2(qy, Qo)l1{q1}- (52)

{r.} =
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Equations (29a, b) for {¢,} now become

[Krl{@o} = {ro};  1q11{wo} =0 (53)
where
(ry) = 221140 LN Qo] + 241 B)IN2AQo, QN Qo}
° lg:1{q:} !
—$A{ [N Qo)) +(241/3) IN2Qo, Qo] H{ o} (54)

The coefficients A5, A3, etc., are given by equations (25){28), expressed in finite
element notation:

-1
A; = 'ﬁquJ[[K]_li[Nz(QO’ Qollla1}, (55)
A5 = 31q,1[N2Qo, Qo)l{a:} — 201K {01}, (56)
A; = 1q, [[[N1(g))]+24,[N2Qo, 4,)1){4:} (57)
5 = 3191 [[N2(Qo, 9141} — |91 | [K1l{@2}, (58)
Ay = T%I.%J[NZ(‘IU‘h)]{‘h}“‘%l.‘l’z][KT]{(Pz} (59)

4. APPLICATIONS

(@) Structure with one degree of freedom

The simple structure illustrated in Fig. 2(a) is considered in order to make transparently
clear the modified structure method of analysis and its relation to the method of Koiter.
The structure consists of two rigid, pin-jointed bars whose common end-point is supported
laterally by a nonlinear spring. The load—displacement behavior in the neighborhood of the
snap-through buckling load is sought. This problem is a simplified version of a problem
considered previously by Hoff [15, 16]. It can evidently be interpreted as a perfect structure,
Fig. 2(b), which has an initial small imperfection “e”. Thus, the conventional method of

imperfect perfect
structure structure

{a) (b)

FiG. 2. Description of column model.
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Koiter is applicable, and this method is presented first in what follows. Then, the modified
structure method, developed in the present paper for application to problems without a
recognizable adjacent perfect structure, is applied.

The fundamental equilibrium path for the perfect structure, Fig. 2(b), is trivial (zero).
The force exerted by the lateral spring is taken to be of the form

Fn) = Kyn+Kyn? (60)

where # is the deflection. Then, the potential energy function for the perfect structure is
written as

() = 3K 1n* +3Kn* — Au. (61)
It is convenient to introduce nondimensional quantities defined by
n m
= — = — 2
E=1 * SR (62a,b)
K,h 2A
= =—. 2¢,d
k K.’ A K. (62c,d)
The nondimensional total potential energy function takes the form
1, 1 .5 Alu
=24k =Z|=). 6
n(0) = 57+ 3k 2(h) (63)
From the Pythagoran theorem and a series expansion, we obtain
Hu)y 1., 1,
E(ﬁ)—ic 85 + ... (64)

Because the fundamental solution is zero, the total potential energy is also the energy of
transition from the fundamental state, and the result of substituting equation (64) into
(63) is expressible as

ml) = P(0) = Py(0)+ Py(O)+ PO+ ... (65)
where
Py(0) = 302~ 3402, (66)
Py(() = kL2, (67)
Py(0) = §AL%, (68)
etc.

In the following, only the first two terms, P,({) and P;({), are retained in the interest of
algebraic simplicity. Since the same energy functional is used for both the Koiter method
and the modified structure method, this approximation will not affect the comparison.

(i) Koiter’s method. The analysis is carried forward by using equation (18)in conjunction
with equation (66) to determine the bifurcation load 4, :

Pyy(§,00) = 0 = (80 (1~ 4) (69)

yields A, = 1, and the mode shape at bifurcation can be taken as {; = 1.
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Following the method of Koiter, a first approximation to the energy function in the
near post-buckling regime is given by the substitution { = a{, into equation (65):

n(aly) = Py(a)+ Ps(a); (70)
or
n(a) = $a*(A—A,)+3ka>. (71)

The approximation to post-buckling behavior is obtained by requiring dn(a)/da = 0,
which gives

A=1—ka (72)

Consider now that the actual structure is the perfect structure specified to have a mis-
alignment “e¢”. In terms of a nondimensional imperfection ¢ = e/h, the appropriately
modified form of equation (64) is

lu 1, 1,
S = e 7
S5 =5l gl e+ (73)
This result leads to a corresponding approximation of the modification to the energy
function n({), equation (65), of the form

0,() = —4eL. (74)
Thus, for the imperfect structure, equation (71) with the modification (74) becomes
n(a) = — {1 —A)a® +1ika®—~ Jea (75)
and the approximate equilibrium path is determined by
d
Zg’) ~ —(1—Aa+ka?—de = 0. (76)

This approximate solution for behavior in the vicinity of buckling load is illustrated
graphically in Fig. 3 as a plot of load vs. displacement for the specified value of ke. The
displacement a* at the maximum load A* is obtained by solving equation (76) explicitly for
A and differentiating to find a* such that di/da = O for a = a*:

—(1—2)+2ka* = 0. (77)
Substitution for a* into equation (76) yields an equation for A*:
(1—A%)? .
py A*e = 0. (78)
For A* = 1, equation (78) is alternatively expressible as
A* = 1-2(—ke)}, ke < 0. (79)

For ke > 0, there is no maximum load. Equation (78), illustrated in Fig. 4 as a plot of A* vs.
— ke, describes the imperfection sensitivity of the structure.

(ii) Modified structure method. The total potential energy of the imperfect structure
[equation (2)] is written using equations (63) and (73) as

n({) = 302 +3k0 — A3A% + &), (80)
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Invoking equation (8), which draws upon only the first and last term in equation (80), we
obtain a resultt in the form of equation (9):

{ = le (81)

This solution is, on the one hand, a linear approximation to the behavior of the actual
structure. On the other hand, in accord with equation (10), it is also the exact behavior of
the modified structure defined by the modified potential 7({):

() = ()= 04(0) (82
where n({) is given by equation (80), and the modifying term is
0.0 = — A%l + kA% (83)

Before calculation of the bifurcation load of this perfect structure, we express the
contributions to the transition energy of equation (13) for this example ast

Py(AD) = 31— DAL + kAeAL?, (84)
Py(AY) = $kAL. (85)
Now, use of equation (18) in conjunction with equation (84) yields,
P18, Al) = 0 = [(1—4)+2k(4e)) (AL)(80). (86)
It follows that the bifurcation load of the perfect structure is
A = (1=2ke)" ! = 1+ 0(e). (87)

The associated buckling mode is denoted by A, = 1.
The post-buckling behavior is sought through equation (23) which, to a first approxi-
mation, is expressed in the form

F(a) = A’z(l—ll)a2+A3a3+A1a. (88)
For this example,
. 0P, _ L
Az = =3 e (3 —ke), (89a)
Ay = Ply=y, = 3K, (89b)
Ay =042, = —-ifs(l—kg). (89¢)

The equation of equilibrium is then

0F(a)
da

= 245(A—A)a+3A4;8* + A4, = 0 (90)

or, upon substitution from equations (89a, b, ¢),
0= -2 —ke)(A—A,)a+ka? — Ale(1 —ke). 91

+ To correlate with the notation of Section 2, regard {; as U,, and A{ as u.
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The graph of this approximate solution for the load-displacement behavior is shown in
Fig. 3. The maximum load 1* is derived from the condition dA/da = 0 and is

+
I = g, - O A3‘,4‘) . (92)
A,
Substituting from equations (89a, b, ¢), we have then
(1—ke)?
* — — ko)
¥l Ay —24,(—ke) ke (93)
or
I* = 1-2(—ke)* 4+ 0(e). (94)
A
10 Modified (perfect) structure
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03 ~ Exact solution
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0.2 0.3
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FiG. 3. Behavior of column model.

It should be noted that 1, and 1* do not depend on k and ¢ independently but only on the
product ke.

The values of A*, £* and 4, are plotted in Fig. 4 against — ke. The agreement between
J* in equation (79), and 1* in equation (93), is very good even when the linear eigenvalue
analysis gives a bifurcation load (4,) for the modified structure which is 50 per cent higher
than the buckling load of the actual structure. Equations (79) and (94) show that the Koiter
method and the modified structure method are equivalent asymptotically for ¢ tending
toward zero, and Fig. 4 shows that agreement between the results of the two methods is
good over a wide range. Figure 3 shows that both Koiter’s method and the modified
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A Linear stabdity analysis

07
=]
S =~
g.046 — Modified structure method
§
Cos5
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~ke
00 1 1 |
0.0 0.01 002 003
Imperfection

FiG. 4. Imperfection sensitivity of the column model.

structure method are useful not only for calculation of critical loads but also for prediction
of load displacement behavior.

(b) Shallow circular arch
The problem of the shallow, clamped, circular arch under uniform lateral pressure

(see Fig. 5) is used by Kerr and Soifer [2] to demonstrate the short-comings of a linear

R=10in  h=00684in
6,=15° .
EA= 2056 10b, El= 796 Ib in’

FiG. 5. Circular arch under uniform pressure.
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eigenvalue stability analysis. The arch exhibits nonlinear, symmetric pre-buckling behavior.
The minimum buckling load is of the bifurcation type associated with asymmetric displace-
ments. If the arch is forced to remain symmetric, it will snap-through at a somewhat higher
load than the bifurcation buckling load.

The arch chosen in [2] for calculation is quite shallow, and a linear analysis in [2]
yields a 10 per cent error for the bifurcation load and 50 per cent error for the snap-through
load. The modified structure method combined with a finite element idealization of the arch
was applied to each case, and it yielded more information with better accuracy.

For the case of the bifurcation load, we start with a perfect structure but a nonlinear one.
The present method creates an adjacent perfect linear structure. When the approximate
behavior is analyzed with the lowest order (and the generally used) Koiter’s approximation,
no correction at all is possible. However, the application of the more refined analysis
represented by equation (23) yields a correction. Instead of 10 per cent error in the linear
analysis, the error reduces to 3 per cent.

The snap-through case is interesting as an example for the modified structure method
because there is no obvious adjacent perfect structure. The 50 per cent error of the linearized
eigenvalue stability analysis is reduced to 5 per cent by the present method.

The results pertaining to the different buckling loads are summarized in Table 1.
Figure 6 shows the approximate behavior of the arch derived from the present analysis as

TaBLE 1. CIRCULAR ARCH BUCKLING LOADS p

Buckling loadt
Linear Modified
Case Exact {2] stability structure
analysis method
Bifurcation 191 2-14 1-86
Snap-through 2:27 345 2:17
. . = R*h
T Nondimensional pressure p = poﬁ.

compared to the exact solution obtained in [2] and also to the direct nonlinear solution that
we obtained by the finite element idealization. We see that, even in this case, where a linear
eigenvalue prediction is 50 per cent higher than the actual buckling load, the modified
structure method yields good results. It is also important to note that the modified structure
method yields accurate load-displacement behavior in the vicinity of the buckling load for
this example.

5. CONCLUSIONS

The principal conceptual contribution of the modified structure method of analysis is
the adaption of the theory of Koiter [3] to treat moderately nonlinear structures that
exhibit snap-through buckling behavior. Unlike methods previously based upon [3], the
modified structure method of analysis produces a linearized fundamental equilibrium path.
This characteristic is an important factor to the utility of the method.
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F1G. 6. Behavior of the circular arch.

Particularly significant is that, although the modified structure method of analysis is
developed in a functional form, a highly systematic procedure is obtained by the subsequent
introduction of matrix notation in conjunction with finite element idealization. The broad
applicability of the finite element approach with regard to the type of structures considered
to take the best advantage of the broad applicability of the modified structure method of
analysis with regard to types of nonlinear behavior.

The principal finite element matrices employed in the modified structure method of
analysis are presently in use in automated systems for linear (eigenvalue) stability and
nonlinear behavior analysis. Thus, the modified structure analysis can be implemented
readily. The computational effort of a modified structure analysis is comparable to that
of a linear stability analysis, while the information obtained is comparable to that of a
direct nonlinear solution for behavior.

The asymptotic character of the theory of [3] is preserved by the modified structure
method of analysis. The former is exact for vanishingly small imperfection, while the latter
is similarly exact for vanishing small nonlinearity of the fundamental equilibrium path.
Imperfections of the usual type (manufacturing variances, etc.) are not considered explicitly
in the present modified structure formulation under the assumption that the finite element
idealization includes account of such variations.
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The numerical results for the circular arch illustrate the applicability of the modified
structure method to the analysis of snap-through buckling behavior. The value of the
second-order approximation provided by the modified structure method is clarified also.
A more comprehensive numerical evaluation of the modified structure method of analysis
is planned for future publication [14] (see also [17]).
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A6cTpakT—ITpumensierca cnocob Koiitepa x aHanM3y nopeneHHsi HATpy3KanepeMelicHre, BOIH3M TOUKH
Pa3BeTBICHHS YCTOWYMBOCTH, NS aHaju3a MmoBeaeHUs BONW3M Takoil caMoif TOYKM Da’IBETBIIEHUA IS
KOMCTPYKUMH, Y KOTOPOH MPOMCXOAMT Npolienkupanue. OCHOBHBIM MOHYTIEM ABISETCH obcyxnexne
HE/UHEHHOCTEN 10 MOMEHTA MOTEPH YCTOWYHBOCTH, B CMBIC/IE HA4Ya/IbHLIX HEMPABHIBHOCTEH, AN ompe-
HeNeHHOM, HACANbHOR KOHCTPYKUMH, HaemBaeMolli MoauduuupoBanHoi. s 3TOro cay4as yYuTHIBACTCH
ACHMNITOTHYECKHA xapaxTep cnocobo Koiitepa. Pa3paboTka Aaercs B HYHKLUMOHANBHOR 3AMMMCH, U 3aTEM,
OHAa CBOAMTCA K MaTPHYHOMY IMPOLIECCY, OCHOBAHHOMY HA MICA/M3ALMH KOHCYHOTO snemMenTa. Jlalorcs
YUC/IEHHbIE PE3YNBLTATHI AJIA MOBEACHHA HArpy3Ka-NEPeMeELLIEHHe I KPYroBoil apkH.



